# 1 WS4 7.1 (A)

Do the following functions have an inverse? If one exists, give the domain and range:

1)  $f(x) = x^5$ 2)  $f(t) = \sqrt{4-t}$ 3) f(x) = x + |x|

1)  $f(x) = x^5$ . Note  $f'(x) = 5x^4 > 0$  is positive for all nonzero x and is 0 only at 0. Then, by Theorem 4.7 (p227) in our book, if f'(x) > 0 on I = (a, b) except for a finite number of points x in I = (a, b), then f is increasing on I.

Then, by Theorem 7.3 (p435) every increasing function has an inverse. Therefore f has an inverse on its domain (we could also have applied the horizontal line test, the graph of  $x^5$  looks like the graph of  $x^3$ ,  $x^7$ ,  $x^9$  etc. even though it looks constant near 0). Since the domain and range of  $f(x) = x^5$  are  $(-\infty, \infty)$ , the domain and range of  $f^{-1}(x) = x^{\frac{1}{5}}$  are  $(-\infty, \infty)$  as well, because  $\text{Domain}(f) = \text{Range}(f^{-1})$  and vice versa.



2)  $f(t) = \sqrt{4-t}$ . Note the domain and range of f(t) are  $t \leq 4$  and  $[0, \infty)$  respectively, and f satisfies the Horizontal Line Test (HLT) on its domain.

To see this, note f(t) is a transformation of the graph of  $\sqrt{t}$ , first we could translate right by 4:  $t \to t - 4$ then reflect it across the y-axis:  $\sqrt{t} \to \sqrt{t-4} \to \sqrt{-(t-4)} = f(t)$  or we could first do a reflection across y then translate left by 4:  $\sqrt{t} \to \sqrt{-t} \to \sqrt{-(t-4)} = f(t)$ . Either way we obtain a transformation of  $f(t) = \sqrt{t}$  whose graph satisfies HLT:



To find  $f^{-1}$ , we switch x and y in the equation  $f(x) = y \to f(y) = x$  and solve for y:

$$f(y) = x = \sqrt{4 - y}$$
  

$$\implies x^2 = 4 - y$$
  

$$\implies y = 4 - x^2 = f^{-1}(x)$$

Since the domain and range of  $f(t) = \sqrt{4-t}$  are  $(-\infty, 4]$  and  $[0, \infty)$  respectively, the domain and range of  $f^{-1}$  are  $[0, \infty)$  and  $(-\infty, 4]$  respectively.

3) f(x) = x + |x|. First note x + |x| = 0 if  $x \le 0$  while x + |x| = 2x if x > 0 since |x| = x there. Thus f(x) does not have an inverse on its full domain since it is constant for all negative x (different values of x are sent to the same value).

It is invertible on the set  $[0,\infty)$  however, with inverse  $g(x) = \frac{x}{2}$  for  $0 \le x$  (notice the slope of g is the inverse of the slope of f).

### 2 WS4 7.1 (B)

Calculate  $(f^{-1})'(b)$ : 4)  $f(x) = x^3 + 7, b = 6$ 5)  $f(x) = \tan(x)$  on  $-\frac{\pi}{2} < x < \frac{\pi}{2}$  for  $b = \sqrt{3}$ 6)  $f(x) = 4\ln(x)$  for b = 0.

4)  $f(x) = x^3 + 7$ , b = 6Well, first we solve for a in 6 = b = f(a) to find the point (a, b) on the function in order to use the formula  $(f^{-1})'(b) = \frac{1}{f'(a)}$ .

Note  $f(a) = a^3 + 7 = 6 \implies a^3 = -1 \implies a = -1$ . Now, we calculate  $f'(x) = 3x^2$ , telling us  $f'(a) = f'(-1) = 3(-1)^2 = 3$ . Thus  $(f^{-1})'(b) = (f^{-1})'(6) = \frac{1}{f'(a)} = \frac{1}{3}$ .

5)  $f(x) = \tan(x)$  on  $-\frac{\pi}{2} < x < \frac{\pi}{2}$  for  $b = \sqrt{3}$ Again, first we solve for a in 6 = b = f(a) to find the point (a, b) on the function in order to use the formula  $(f^{-1})'(b) = \frac{1}{f'(a)}.$ Note  $f(a) = \tan(a) = \sqrt{3} = \frac{\sqrt{3}}{1} = \frac{\text{hyp}_a}{\text{adj}_a}$  for  $-\pi/2 < a < \pi/2$  telling us that  $a = \frac{\pi}{3}$ . We'll also need  $f'(x) = \sec^2(x)$ , so  $f'(a) = f'(\pi/3) = \sec^2(\pi/3) = (\frac{\text{hyp}_{\pi/3}}{\text{adj}_{\pi/3}})^2 = (\frac{2}{1})^2 = 4$  (remember  $\pi/3 = 30^\circ$  for a 30-60-90 triangle).

Now, we apply the formula  $(f^{-1})'(b) = (f^{-1})'(\sqrt{3}) = \frac{1}{f'(a)} = \frac{1}{f'(\pi/3)} = \frac{1}{4}$ .

6)  $f(x) = 4 \ln(x)$  for b = 0.

Again, first we solve for a in 6 = b = f(a) to find the point (a, b) on the function in order to use the formula  $(f^{-1})'(b) = \frac{1}{f'(a)}$ .

Note  $b = 0 = f(a) = 4 \ln(a) = 0 \iff \ln(a) = 0 \iff a = 1$  (because for any c > 0,  $\log_c(1) = 0 \iff c^0 = 1$ ). Now, since,  $f'(x) = \frac{4}{x}$ , we have  $f'(a) = f'(1) = \frac{4}{1} = 4$ . Then,  $(f^{-1})'(b) = \frac{1}{f'(a)} = (f^{-1})'(0) = \frac{1}{4}$ .

### 3 WS4 7.1 (C)

Can a polynomial of even degree have an inverse? explain.

A polynomial of even degree cannot have an inverse on its entire domain because if p(x) is a polynomial of even degree,  $\lim_{x\to\infty} p(x) = \infty$  and  $\lim_{x\to-\infty} p(x) = \infty$ . Thus, the horizontal line test fails for all "big enough" lines y = a where a > 0, by the intermediate value theorem (IVT): a continuous function on [a, b] assumes all values c between f(a) and f(b).

Split  $(-\infty, \infty)$  up into  $(-\infty, 0]$  and  $[0, \infty)$ . Then since  $\lim_{x\to -\infty} p(x) = \infty$ , apply IVT to the interval  $(-\infty, 0]$  so all values between p(0) and  $\infty$  are obtained by p(x) with x < 0.

Similarly, applying the IVT to  $[0, \infty)$ , all values between p(0) and  $\infty$  are obtained by p(x) with positive x. Then, if  $C \ge p(0)$ , the line y = C must intersect the graph of p(x) twice, once at a negative x value (x = -B for some B > 0) and once at a positive x value (x = A).

#### 4 WS4 7.1 (D)

Suppose f has a continuous derivative on the interval [0,6]. Assume also that f' is increasing on [0,4], f' is decreasing on [4,6], and f'(0) = -1, f'(3) = 0, f'(4) = 2, and f'(5) = 0. On what subintervals does f have an inverse?

Note that f' increasing on [0,4] but f'(0) = -1, f'(3) = 0 means that f'(x) < 0 on [0,3] except for at a finite number of points (at x = 3) since the problem states that f' is continuous. Thus f is decreasing on [0,3] by Theorem 4.7 (p227) in our book, so f has an inverse here by Theorem 7.3 (p435) in our book.

Then, on [3, 4], f' is still increasing (it increases on [0,4]), so f'(x) > 0 on [3,4] except at x = 3. Further, f'(x) > 0 on [4,5] except at x = 5, since it is decreasing but still positive until f'(5) = 0. Thus f'(x) > 0 on [3,5] except for at the finite number of points x = 3 and x = 5, so f is increasing on [3,5], hence has an inverse on this subinterval.

Finally, on [5,6], f'(x) < 0 except for the point x = 5 (f'(5) = 0), since f' decreases on [4,6]. Thus f decreases on [4,6], hence has an inverse here.

Then, the subintervals where f has an inverse are [0,4], [4,5], and [5,6].

# 5 WS4 7.2 (A)

1) Show that the maximum value of the normal density function  $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$  is  $f(\mu) = \frac{1}{\sigma\sqrt{2\pi}}$ .

Well, first we find f' to use the first derivative test to find a maximum. We'll use the formula

$$\frac{d}{dx}e^{f(x)} = f'(x) \cdot e^{f(x)}$$

treating  $\sigma$  and  $\mu$  as constants. Then

$$f'(x) = \frac{-2(x-\mu)}{2\sigma^2} \cdot \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} = \frac{-(x-\mu)}{\sigma^3\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}.$$

Note  $f'(\mu) = 0 = \frac{-(\mu-\mu)}{\sigma^3\sqrt{2\pi}}e^{\frac{-(\mu-\mu)^2}{2\sigma^2}}$  is the only 0 of f'. This indicates a local extrema.

Left of  $x = \mu$ , the slope is positive since  $e^x > 0$  for all x, while  $\sigma > 0$  ( $\sigma$  is a standard deviation), so with the trial point  $\mu - 1$  we have  $-((\mu - 1) - \mu) = 1 > 0$  tells us f' is positive on the interval  $(-\infty, \mu)$ .

Similarly, on the interval to the right of  $\mu$ ,  $f'(\mu + 1) < 0$ . Thus  $f(\mu)$  is the maximum of f by the first derivative test.

## 6 WS4 7.2 (B)

Find the area A of the region bounded by the graphs of  $y = 3e^x$  and  $y = 2 + e^{2x}$ .

We solve for the intersection points of the two functions:  $3e^x = 2 + e^{2x} \implies e^{2x} - 3e^x + 2 = 0$ . Let  $X = e^x$  so that  $X^2 - 3X + 2 = 0 = (X - 2)(X - 1)$ , so  $X = 1 = e^a \implies a = 0$ ,  $X = 2 = e^b \implies b = \ln(2)$  are our bounds.

To see which function is on top over the interval  $[0, \ln(2)]$ , let's try a trial point to compare:  $3e^1 = 3e$ , while  $2 + e^{2 \cdot 1} = 2 + e^2$ . This is a little difficult to decide which one is bigger.

Lets try  $x = \ln \frac{3}{2}$  (ln(x) is increasing, so  $0 < \ln \frac{3}{2} < \ln(2)$ , and we're still in the interval). Then  $3e^{\ln \frac{3}{2}} = 3 \cdot \frac{3}{2} = \frac{9}{2} = 4 + \frac{1}{2}$ , while  $2 + e^{2\ln \frac{3}{2}} = 2 + (e^{\ln \frac{3}{2}})^2 = 2 + (\frac{3}{2})^2 = 2 + \frac{9}{4} = \frac{8}{4} + \frac{9}{4} = \frac{17}{4} = 4 + \frac{1}{4}$ . Since  $4 + \frac{1}{2} > 4 + \frac{1}{4}$ ,  $3e^x$  is bigger than  $2 + e^{2x}$  on [0, ln 2].

Now, to find the area A of the region, we integrate top minus bottom:

$$A = \int_{x=0}^{x=\ln 2} [(3e^x) - (2+e^{2x})]dx = [3e^x - 2x - \frac{1}{2}e^{2x}]_0^{\ln 2} = [3e^{\ln 2} - 2\ln 2 - \frac{1}{2}e^{2\ln 2}] - [3e^0 - 2 \cdot 0 - \frac{1}{2}e^{2\cdot 0}]$$
(1)

$$= [3 \cdot 2 - 2\ln 2 - \frac{1}{2}2^2] - [1 - 0 - \frac{1}{2}]$$
(2)

$$= [4 - 2\ln 2] - [\frac{1}{2}] \tag{3}$$

$$=\frac{7}{2} - 2\ln 2$$
 (4)

## 7 WS4 7.2 (C)

Find the volume V of the solid obtained by revolving about the line y = 1 the region between the graph of the equation  $y = e^{-2x}$  and the x-axis on the interval [0,1].

First, I'll plot the region R that we'll rotate:



Note that rotating R around the line y = 1 is the same as rotating the area between the functions  $f(x) = e^{-2x} - 1$  and g(x) = -1 about the line y = 0 so we can use washers about the x-axis (i.e. shifting all y-values down by 1):



We'll obtain V by the Washer method applied to OUTER function g(x) = -1 and INNER function

 $f(x) = e^{-2x} - 1$  (make sure you understand this) on the interval [0,1]:

$$V = \pi \int_{x=0}^{x=1} [(outer)^2 - (inner)^2] dx = \pi \int_{x=0}^{x=1} [(-1)^2 - (e^{-2x} - 1)^2] dx$$
(5)

$$=\pi \int_{x=0}^{x=1} [1 - (e^{-4x} - 2e^{-2x} + 1)]dx \tag{6}$$

$$=\pi \int_{x=0}^{x=1} (-e^{-4x} + 2e^{-2x})dx \tag{7}$$

$$=\pi\left[-\frac{e^{-4x}}{-4}+2\frac{e^{-2x}}{-2}\right]_{0}^{1}$$
(8)

$$=\pi[(\frac{e^{-4}}{4} - e^{-2}) - (\frac{e^{0}}{4} - e^{0})]$$
(9)

$$=\pi\left[\frac{3}{4}-e^{-2}+\frac{e^{-4}}{4}\right]=\frac{\pi(3-4e^{-2}+e^{-4})}{4} \tag{10}$$