
1 WS4 7.1 (A)

Do the following functions have an inverse? If one exists, give the domain and range:
1) f(x) = x5

2) f(t) =
√

4− t
3) f(x) = x+ |x|

1) f(x) = x5. Note f ′(x) = 5x4 > 0 is positive for all nonzero x and is 0 only at 0. Then, by Theorem
4.7 (p227) in our book, if f ′(x) > 0 on I = (a, b) except for a finite number of points x in I = (a, b), then f
is increasing on I.

Then, by Theorem 7.3 (p435) every increasing function has an inverse. Therefore f has an inverse on
its domain (we could also have applied the horizontal line test, the graph of x5 looks like the graph of x3, x7,
x9 etc. even though it looks constant near 0). Since the domain and range of f(x) = x5 are (−∞,∞), the

domain and range of f−1(x) = x
1
5 are (−∞,∞) as well, because Domain(f) = Range(f−1) and vice versa.
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2) f(t) =
√

4− t. Note the domain and range of f(t) are t ≤ 4 and [0,∞) respectively, and f satisfies the
Horizontal Line Test (HLT) on its domain.
To see this, note f(t) is a transformation of the graph of

√
t, first we could translate right by 4: t → t − 4

then reflect it across the y-axis:
√
t →

√
t− 4 →

√
−(t− 4) = f(t) or we could first do a reflection across

y then translate left by 4:
√
t →

√
−t →

√
−(t− 4) = f(t). Either way we obtain a transformation of

f(t) =
√
t whose graph satisfies HLT:
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To find f−1, we switch x and y in the equation f(x) = y → f(y) = x and solve for y:

f(y) = x =
√

4− y
=⇒ x2 = 4− y

=⇒ y = 4− x2 = f−1(x).

Since the domain and range of f(t) =
√

4− t are (−∞, 4] and [0,∞) respectively, the domain and range
of f−1 are [0,∞) and (−∞, 4] respectively.

3) f(x) = x + |x|. First note x + |x| = 0 if x ≤ 0 while x + |x| = 2x if x > 0 since |x| = x there. Thus
f(x) does not have an inverse on its full domain since it is constant for all negative x (different values of x
are sent to the same value).

It is invertible on the set [0,∞) however, with inverse g(x) = x
2 for 0 ≤ x (notice the slope of g is the

inverse of the slope of f).

2 WS4 7.1 (B)

Calculate (f−1)′(b) :
4) f(x) = x3 + 7, b = 6
5) f(x) = tan(x) on −π2 < x < π

2 for b =
√

3
6) f(x) = 4 ln(x) for b = 0.

4) f(x) = x3 + 7, b = 6
Well, first we solve for a in 6 = b = f(a) to find the point (a, b) on the function in order to use the formula
(f−1)′(b) = 1

f ′(a) .

Note f(a) = a3 + 7 = 6 =⇒ a3 = −1 =⇒ a = −1. Now, we calculate f ′(x) = 3x2, telling us
f ′(a) = f ′(−1) = 3(−1)2 = 3. Thus (f−1)′(b) = (f−1)′(6) = 1

f ′(a) = 1
3 .

5) f(x) = tan(x) on −π2 < x < π
2 for b =

√
3

Again, first we solve for a in 6 = b = f(a) to find the point (a, b) on the function in order to use the formula



(f−1)′(b) = 1
f ′(a) .

Note f(a) = tan(a) =
√

3 =
√
3
1 = hypa

adja
for −π/2 < a < π/2 telling us that a = π

3 .

We’ll also need f ′(x) = sec2(x), so f ′(a) = f ′(π/3) = sec2(π/3) = (
hypπ/3
adjπ/3

)2 = ( 2
1 )2 = 4 (remember

π/3 = 30◦ for a 30-60-90 triangle).

Now, we apply the formula (f−1)′(b) = (f−1)′(
√

3) = 1
f ′(a) = 1

f ′(π/3) = 1
4 .

6) f(x) = 4 ln(x) for b = 0.

Again, first we solve for a in 6 = b = f(a) to find the point (a, b) on the function in order to use the
formula (f−1)′(b) = 1

f ′(a) .

Note b = 0 = f(a) = 4 ln(a) = 0 ⇐⇒ ln(a) = 0 ⇐⇒ a = 1 (because for any c > 0, logc(1) = 0 ⇐⇒
c0 = 1). Now, since, f ′(x) = 4

x , we have f ′(a) = f ′(1) = 4
1 = 4. Then, (f−1)′(b) = 1

f ′(a) = (f−1)′(0) = 1
4 .

3 WS4 7.1 (C)

Can a polynomial of even degree have an inverse? explain.

A polynomial of even degree cannot have an inverse on its entire domain because if p(x) is a polynomial
of even degree, limx→∞ p(x) = ∞ and limx→−∞ p(x) = ∞. Thus, the horizontal line test fails for alll ”big
enough” lines y = a where a > 0, by the intermediate value theorem (IVT): a continuous function on [a, b]
assumes all values c between f(a) and f(b).

Split (−∞,∞) up into (−∞, 0] and [0,∞). Then since limx→−∞ p(x) = ∞, apply IVT to the interval
(−∞, 0] so all values between p(0) and ∞ are obtained by p(x) with x < 0.

Similarly, applying the IVT to [0,∞), all values between p(0) and ∞ are obtained by p(x) with positive
x. Then, if C ≥ p(0), the line y = C must intersect the graph of p(x) twice, once at a negative x value
(x = −B for some B > 0) and once at a positive x value (x = A).

4 WS4 7.1 (D)

Suppose f has a continuous derivative on the interval [0, 6]. Assume also that f ′ is increasing on [0, 4], f ′ is
decreasing on [4, 6], and f ′(0) = −1, f ′(3) = 0, f ′(4) = 2, and f ′(5) = 0. On what subintervals does f have
an inverse?

Note that f ′ increasing on [0, 4] but f ′(0) = −1, f ′(3) = 0 means that f ′(x) < 0 on [0,3] except for at a
finite number of points (at x = 3) since the problem states that f ′ is continuous. Thus f is decreasing on
[0,3] by Theorem 4.7 (p227) in our book, so f has an inverse here by Theorem 7.3 (p435) in our book.

Then, on [3, 4], f ′ is still increasing (it increases on [0,4]), so f ′(x) > 0 on [3, 4] except at x = 3. Fur-
ther, f ′(x) > 0 on [4,5] except at x = 5, since it is decreasing but still positive until f ′(5) = 0. Thus
f ′(x) > 0 on [3, 5] except for at the finite number of points x = 3 and x = 5, so f is increasing on [3,5],
hence has an inverse on this subinterval.

Finally, on [5, 6], f ′(x) < 0 except for the point x = 5 (f ′(5) = 0), since f ′ decreases on [4, 6]. Thus f
decreases on [4,6], hence has an inverse here.



Then, the subintervals where f has an inverse are [0,4], [4,5], and [5,6].

5 WS4 7.2 (A)

1) Show that the maximum value of the normal density function f(x) = 1
σ
√
2π
e
−(x−µ)2

2σ2 is f(µ) = 1
σ
√
2π

.

Well, first we find f ′ to use the first derivative test to find a maximum. We’ll use the formula

d
dxe

f(x) = f ′(x) · ef(x)

treating σ and µ as constants. Then

f ′(x) = −2(x−µ)
2σ2 · 1

σ
√
2π
e
−(x−µ)2

2σ2 = −(x−µ)
σ3
√
2π
e
−(x−µ)2

2σ2 .

Note f ′(µ) = 0 = −(µ−µ)
σ3
√
2π
e
−(µ−µ)2

2σ2 is the only 0 of f ′. This indicates a local extrema.

Left of x = µ, the slope is positive since ex > 0 for all x, while σ > 0 (σ is a standard deviation), so with
the trial point µ− 1 we have −((µ− 1)− µ) = 1 > 0 tells us f ′ is positive on the interval (−∞, µ).

Similarly, on the interval to the right of µ, f ′(µ + 1) < 0. Thus f(µ) is the maximum of f by the first
derivative test.

6 WS4 7.2 (B)

Find the area A of the region bounded by the graphs of y = 3ex and y = 2 + e2x.

We solve for the intersection points of the two functions: 3ex = 2 + e2x =⇒ e2x − 3ex + 2 = 0. Let
X = ex so that X2 − 3X + 2 = 0 = (X − 2)(X − 1), so X = 1 = ea =⇒ a = 0, X = 2 = eb =⇒ b = ln(2)
are our bounds.

To see which function is on top over the interval [0, ln(2)], let’s try a trial point to compare: 3e1 = 3e,
while 2 + e2·1 = 2 + e2. This is a little difficult to decide which one is bigger.

Lets try x = ln 3
2 (ln(x) is increasing, so 0 < ln 3

2 < ln(2), and we’re still in the interval). Then 3eln
3
2 =

3 · 32 = 9
2 = 4+ 1

2 , while 2+e2 ln 3
2 = 2+(eln

3
2 )2 = 2+( 3

2 )2 = 2+ 9
4 = 8

4 + 9
4 = 17

4 = 4+ 1
4 . Since 4+ 1

2 > 4+ 1
4 ,

3ex is bigger than 2 + e2x on [0, ln 2].

Now, to find the area A of the region, we integrate top minus bottom:

A =

∫ x=ln 2

x=0

[(3ex)− (2 + e2x)]dx = [3ex − 2x− 1

2
e2x]ln 2

0 = [3eln 2 − 2 ln 2− 1

2
e2 ln 2]− [3e0 − 2 · 0− 1

2
e2·0]

(1)

= [3 · 2− 2 ln 2− 1

2
22]− [1− 0− 1

2
] (2)

= [4− 2 ln 2]− [
1

2
] (3)

=
7

2
− 2 ln 2 (4)



7 WS4 7.2 (C)

Find the volume V of the solid obtained by revolving about the line y = 1 the region between the graph of
the equation y = e−2x and the x-axis on the interval [0,1].

First, I’ll plot the region R that we’ll rotate:
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Note that rotating R around the line y = 1 is the same as rotating the area between the functions
f(x) = e−2x− 1 and g(x) = −1 about the line y = 0 so we can use washers about the x-axis (i.e. shifting all
y-values down by 1):
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We’ll obtain V by the Washer method applied to OUTER function g(x) = −1 and INNER function



f(x) = e−2x − 1 (make sure you understand this) on the interval [0,1]:

V = π

∫ x=1

x=0

[(outer)2 − (inner)2]dx = π

∫ x=1

x=0

[(−1)2 − (e−2x − 1)2]dx (5)

= π

∫ x=1

x=0

[1− (e−4x − 2e−2x + 1)]dx (6)

= π

∫ x=1

x=0

(−e−4x + 2e−2x)dx (7)

= π[−e
−4x

−4
+ 2

e−2x

−2
]10 (8)

= π[(
e−4

4
− e−2)− (

e0

4
− e0)] (9)

= π[
3

4
− e−2 +

e−4

4
] =

π(3− 4e−2 + e−4)

4
(10)


